Major Mineral Systems in the PCO: Implications of AEM Data for Uranium Mineral Systems

Subhash Jaireth, Songfa Liu, Mike Craig

with assistance from GA-AEM Team and NTGS geologists
Major Mineral Systems in PCO

- World-class (U, Au); Significant deposits (Sn, Ta, W, Fe, Cu, Ni, Co, Pb-Zn, and magnesite)
- Past Reviews:
 - Deposits on the PINE CREEK sheet, Ahmad et al., 1993
 - U (Lally and Bajwah, 2006; Ahmad et al., 2006)
 - Au (Ahmad et al., 2009)
 - Rum Jungle Mineral Field (Ahmad et al., 2006)
 - Sn-Ta pegmatite (Frater, 2005)
- Main objective of the review
 - assist interpretation of AEM data
 - comment on mineral potential of uranium systems
Review of Major Mineral Systems in PCO

- Compile ages of mineral deposits
- Timing of mineralisation and of other events
- Construct time-space-event plots of 3 domains
- Define
 - critical elements and
 - mappable features U and Au systems
Outline

• Focus on uranium mineral systems
 – For other systems see GA Record
• Unconformity-related uranium systems
• Outline main features of fertile systems
• Discuss new prospective areas
• Discuss basemetal and uranium deposits in the Rum Jungle Mineral Field (RJMF)
Age of Major Deposits

- Ages (best interpretation possible)
- Numbers should be read as approximate

Note difference in metallogeny of 3 domains

- Au, U, Sn-Ta, Basemetal, Fe
Six Groups of Major Mineral Systems

- **Basin-related**
 - Volcanic-associated (Pb-Zn, Cu, Fe)
 - Associated with diagenetic fluids (U, Pb-Zn, Cu, magnesite)

- **Deformation and/metamorphism-related**
 - Lode Au
 - Base metal sulphide (Woodcutters)

- **Felsic magmatism-related**
 - Vein, pegmatite, greisen, skarn (Sn, Ta, W, Pb-Zn, Cu, Fe, REEs?)

- **Regolith-related**
 - Iron

- **Hybrid**
 - Lode Au, Iron, magnesite
Unconformity-Related Uranium (what we know)

- Diagenetic fluids
- Uranium sourced from
 - metasediments and/or
 - ‘paleoregolith’

Kombolgie

Depot Creek Sandstone (oxidised)

Metasediment

- Fluid flow along
 - sandstone aquifers
 - unconformity
 - faults

Ranger

- Deposition in
 - structures, breccia zone
 - reduced rocks (graphite?, chlorite)
Graphite As Reductant (?)

Graphite not effective
- at < 250°C reaction slow
- graphite not always present
 (e.g. Nabarlek)

Fe-Chlorite (best alternative)
- replacement of Fe-chlorite by illite/clay
- releases Fe
- reduces fluid to deposit U
- oxidises to magnetite/hematite
- note alteration zones in deposits:
 - outer chlorite
 - inner illite, clay, hematite

Graphite still important
- can form reductants (hydrogenation)
- map ore-localising structures

Regional clay alteration
In sandstone

Fe-Mg chlorite, biotite in the basement
Why Timing is Important

<table>
<thead>
<tr>
<th>Age (Ma)</th>
<th>Period</th>
<th>Stratigraphy</th>
<th>Deformation/ Metamorphic</th>
<th>Diagenetic</th>
<th>Magmatic</th>
<th>Metallogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td></td>
<td>Mount Rigg Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Katherine River Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kombolgie Subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td>Nourlangie Schist Cahill Formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Deposition of Katherine River Group: ~1810 Ma to ~1710 Ma
- Diagenesis: 1798 Ma; 1746 Ma; 1726 Ma; 1690 Ma to 1680 Ma
- Mid-Tawallah Inversion (1750 Ma to 1730 Ma)
- Uranium deposits: Ranger at ~1740 Ma; Jabiluka, Naborlek (1690 Ma to 1680 Ma)
- Two Uranium-episodes and two inversion-events
- Two Uranium-episodes and two magmatic events (Mafic at ~1720 Ma; Felsic at ~1710 Ma)
Timing of Uranium Mineralisation

- Main phase of mineralisation during compression
- Two events important:
 - extension (sedimentation, diagenesis)
 - compression (expulsion of fluids from the basin)
Uranium Deposits and Prospects

- Margins of the Archean
- Proximal to faults

- Proximity to the Archean:
 - U-source (?) or
 - Basin architecture
Two-Fluid-Flow Events

Extension
- Sedimentation
- Diagenesis
- Fluid reservoir

Basin inversion
- Compression
- Expulsion of fluids from the basin

Mesoproterozoic to Archean
- Marigowa Sandstone
- Gilruth Volcanic Member
- Gumarrinbang Sandstone
- Nungbalgarri Volcanics
- Mamadawerre Sandstone
- pre-Kombolgie basement, including Archean
- Nourlangie Schist
Diagenetic Model of Unconformity-Related U

(Kyser and Cunney, 2008)

Pre-Kombolgie solid geology
Nabarlek – Caramal area
Features of Fertile Unconformity-U System

Architecture of McArthur (Katherine River Group) and Birrindudu basins (Tolmer Group)

- Unconformity (depth and basement rocks)
- Pre-erosional extent of the basin
- Sub-basins
- Sediment thickness (>4 to 5 kms important)
- Structures and history of movement
- Diagenetic history (very important)
Features of Fertile Unconformity-U System

• U-rich source rocks in the basement including ‘paleoregolith’
• Thermal drivers of fluid-flow (mafic and/or felsic rocks in the basins)
• Faults with post-Katherine River and Tolmer Group movement
• Reductants
 – Graphite
 – chlorite (Fe/Mg-composition of chlorite)
Kombolgie AEM Survey by VTEM™

Create a 3D model of basin architecture using:
- AEM sections
- Drill hole data
Prospective Areas in the Nimbuwah Domain

Unconformity-related U
- Archean – topographic highs
- Diagenetic fluid flow: N- or NW-trending (Kyser & Cuney 2008)
- Reductants (e.g., Cahill Fm) at margins of paleo-highs

Prospective areas
- Marginal zones of the Archean
- Rimmed by Cahill Formation
Unconformity Under Depot Creek Sandstone

Mapped in AEM:

- Base of Daly Basin or regolith-related
- Conductor in Stray Creek Sandstone
- Depot Creek unconformity
Prospective Areas Near Hayes Creek – Pine Creek

AEM in 3D: Mapped 3 horizons in 3D
Prospective areas in the Birrindudu Basin

- Covered by Daly Basin: Depot Creek Sst <100 m at margins, but >500 m in central part of the Basin
- Absence of Archean granite – gneiss complex (?)
- Absence of mafic and/or felsic magmatism (of similar age to Oenpelli Dolerite)

Future work

- 3D model of Daly Basin & underlying Proterozoic
- Improve solid basement geology: details from drill holes
- Depot Creek Sst: age, diagenetic history & provenance of sediments: to estimate pre-erosion extent of Tolmer Gp
- Evaluate presence of Archean
Unconformity Between Tolmer Group and Welltree Metamorphics

Welltree Metamorphics
- Upper-amphibolite facies
- Graphitic
- Chloritic

Biggest unknown
- Tolmer Group
 - Extent
 - Diagenetic history

Tolmer Group

Welltree Metamorphics
Other Unconformity-U Systems

- Fitzmaurice Basin (especially unconformity between The Fitzmaurice Group and the Hermit Creek Metamorphics)
- The unconformity between Cretaceous sandstone and Proterozoic metasediments (Ranger 68, Austatom?)
Sandstone-Hosted Uranium

- Cambrian (Jindare Formation):
 - Reductant?

- Cretaceous
 - Mostly marine
 - Basal parts fluvial

- Cenozoic
 - No information
 - Paleovalley and/or paleochannels not mapped
 - Infill sediments not known
Conclusions

AEM survey and review of mineral systems:

- Prospectivity of known areas confirmed
- New prospective areas defined
 - Daly Basin
 - Welltree Metamorphics/Tolmer Group unconformity
- Future work:
 - Pre-erosion extent of Katherine River and Tolmer groups
 - 3D architecture of basins
 - Diagenetic history of sediments
- Sandstone-hosted uranium deposits in PCO (?)